Zusammenfassung Physik TSU

1	OP	PTIK	2	
	1.1	STRAHLENOPTIK	2	
	1.2	SPIEGEL, LINSEN		
2	MI	ECHANIK	3	
	2.1	KINEMATIK	3	
	2.2	DYNAMIK		
	2.3	Arbeit		
	2.4	Energie		
	2.5	Leistung		
	2.6	IMPULS	4	
3	SC	CHWINGUNGEN	6	
	3.1	ALLGEMEIN	6	
	3.2	HARMONISCHE SCHWINGUNG (FEDERPENDEL)		
	3.3	GEDÄMPFTE SCHWINGUNG		
	3.4	MATH. DARSTELLUNG		
	3.5	Dopplereffekt		
	3.6	LAUSTÄRKE	7	
4	W	ÄRMELEHRE	8	
	4.1	THERMISCHE AUSDEHNUNG		
	4.2	GASGESETZE		

1 Optik

1.1 Strahlenoptik

Brechungsindex:

$$n = \frac{c_o}{c_{Mat}}$$

 $c_o = 299792458 \text{ m/s}$

 ${\cal C}_o$: \Leftarrow HP EQ Lib. =>COLIB => CONLI

Brechungsgesetz:

$$n_1 * \sin \mathbf{a}_1 = n_2 * \sin \mathbf{a}_2$$

HP EQ Lib. => Optics => Law of Refraction

Grenzwinkel:

$$\mathbf{a}_{Grenz} = \arcsin\left(\frac{n_2}{n_1}\right)$$

HP EQ Lib. => Optics => Critical angle

1.2 Spiegel, Linsen

Sphärische Reflexion:

$$\frac{1}{g} + \frac{1}{b} = \frac{1}{f} = \frac{2}{r}$$

 $-\frac{g}{b} = \frac{G}{B}$

HP EQ Lib. => Optics => Spherical Reflection

g: Gegenstandsweite(v) b: Bildweite(u)

G: Gegenstandsgrösse B: Bildgrösse

Dünne Linsen:

HP EQ Lib. => Optics => Spherical Refraction HP EQ Lib. => Optics => Thin Lens

2 Mechanik

2.1 Kinematik

Gleichmässig beschleunigte Bewegung ohne Anfangsgeschwindigkeit:

$$v = a * t$$

$$s = \frac{a}{2} * t^2$$

$$v = \sqrt{2*a*s}$$

Gleichmässig beschleunigte Bewegung mit Anfangsgeschwindigkeit:

$$v = a * t + v_0$$

$$s = \frac{a}{2} * t^2 + v_0 * t$$

$$v = \sqrt{2as + v_0^2}$$

Freier Fall, Wurf:

=> Giek L8 oder HP EQ Lib. => Motion => Obj. In free Fall EQ Lib. => Motion => Proj. Motion

2.2 Dynamik

Gewichtskraft:

$$F_G = m * g$$

Schiefe Ebene, Kräfte:

$$\overrightarrow{F_G} = \overrightarrow{F_P} + \overrightarrow{F_\perp}$$

$$\overrightarrow{F_N} = -\overrightarrow{F_\perp}$$

$$\overrightarrow{F_{Res}} = \overrightarrow{F_\perp}$$

$$\overrightarrow{F_P} = \overrightarrow{F_G} * \sin \mathbf{a}$$

$$\overrightarrow{F_\perp} = \overrightarrow{F_G} * \cos \mathbf{a}$$

Reibungskraft:

$$\overrightarrow{F_{\mathrm{Re}\,ib}}=\mathbf{m}^{*}\overrightarrow{F_{G}}$$

Diverse Formeln:

$$a = g * \sin \mathbf{a}$$

schief. Ebene o. m

$$a = g(\sin \mathbf{a} - \cos \mathbf{a} * \mathbf{m})$$

schief. Ebene m. *m*

$$a = m^* g$$

Federkraft:

$$F_{Feder} = -D * \Delta x$$

Gleichförmige Kreisbewegung:

$$|\overrightarrow{V}| = 2 * \mathbf{p} * r * f$$

$$V = \mathbf{w} * R$$

$$a_z = \frac{v^2}{r} = \mathbf{w}^2 * r$$

Zentripetalkraft:

$$F_{z} = m * a_{z}$$

V min bis zum herunterfallen des Körpers: $v = \sqrt{r * g}$

2.3 Arbeit

Mechanische Arbeit: $W = F_s * s = F_z * s * \cos \mathbf{a}$

Beschl. Arbeit: $W = \frac{m}{2}v^2$

Hubarbeit: W = mgh

2.4 Energie

Kinetische Energie: $E_{Kin} = \frac{m}{2}v^2$

Potentielle Energie: $E_{Pot} = mgh$

Federenergie: $E(W) = \frac{D}{2}s^2$

Energieerhaltung: $\frac{m_1}{2} * v_1^2 + \frac{m_2}{2} * v_2^2 = \frac{m_1}{2} * v_1^{'2} + \frac{m_2}{2} * v_2^{'2}$

 $E_{tot} = E_{Kin} + E_{Pot} = konst.$

2.5 Leistung

Durchschnittsleistung: $P = \frac{W}{t}$

Wirkungsgrad: $\mathbf{h} = \frac{W_1}{W_2} \qquad W_1 = zu / W_2 = ab$

2.6 Impuls

Impuls: $\vec{p} = m * \vec{v}$

$$E_{Kin} = \frac{p^2}{2 * m}$$
$$F = \frac{\Delta p}{\Delta t}$$

$$\overrightarrow{p_{tot}} = \overrightarrow{p_1} + \overrightarrow{p_2} + \overrightarrow{p_3} + \dots$$

Impulserhaltung:	$m_1 * \overrightarrow{v_1} + m_2 * \overrightarrow{v_2} = m_1 * \overrightarrow{v_1} + m_2 * \overrightarrow{v_2}$

Energieerhaltung:
$$\frac{m_1}{2} * v_1^2 + \frac{m_2}{2} * v_2^2 = \frac{m_1}{2} * v_1^{'2} + \frac{m_2}{2} * v_2^{'2}$$

Zentraler elastischer Stoss: $v_2 - v_1 = -(v_2 - v_1)$

Inelastischer Stoss, Impuls: $m_1 * \overrightarrow{v_1} + m_2 * \overrightarrow{v_2} = (m_1 + m_2) * \overrightarrow{v_1}$

Inelastischer Stoss, Energie: $\frac{m_1}{2} * v_1^2 + \frac{m_2}{2} * v_2^2 = \frac{m_1 + m_2}{2} * v_2^2 + E_D$

 $E_{\scriptscriptstyle D} = Deformations energie$

(gilt nur wenn
$$v_2 = 0$$
)
$$v_1' = \frac{1 - \frac{m_2}{m_1}}{1 + \frac{m_2}{m_1}} * v_1$$
$$v_2' = \frac{2}{1 + \frac{m_2}{m_1}} * v_1$$

3 Schwingungen

3.1 Allgemein

Kreisfrequenz: $\mathbf{w} = 2 * \mathbf{p} * f$

Auslenkung: $s(t) = A * \sin(\mathbf{w}^* t)$

A: max. Auslenkung (von Null gemessen!)

Geschwindigkeit: $v(t) = A * \mathbf{w} * \cos(\mathbf{w} * t)$

Beschleunigung: $a(t) = -A * \mathbf{w}^2 * \sin(\mathbf{w}^* t)$

max. Beschleunigung: $a_{\text{max}} = A^* \mathbf{w}^2$

3.2 Harmonische Schwingung (Federpendel)

Winkelgeschw. Sinusschwingung: $\mathbf{w} = \sqrt{\frac{D}{m}}$

Frequenz Sinusschwingung: $f = \frac{1}{2p} * \sqrt{\frac{D}{m}}, T = 2p * \sqrt{\frac{m}{D}}$

Math.(Faden-) Pendel: $f = \frac{1}{2p} * \sqrt{\frac{g}{l}}$

1: Fadenlänge

Elektr. Schwingkreis: $f = \frac{1}{2p} * \sqrt{\frac{1}{L*C}}$

Harm. Oszillator: $a(t) = -\frac{D}{m} * y(t)$

3.3 Gedämpfte Schwingung

Beschleunigung: $A(t) = A_0 * e^{-a*t}$

 A_0 : Anfangswert,

 \boldsymbol{a} : Dämpfungskonst. $\left[\frac{1}{s}\right]$

oder: $A(t) = A_0 * e^{-a*t} * \sin(w*t)$

Math. Darstellung

 $y(x, y) = A * \sin (\mathbf{w}^* t - k * x)$ Wellenfunktion:

A: Amplitude; w: Winkelgeschwindigkeit

k: Wellenvektor $k = \frac{2\mathbf{p}}{l}$

 $c_{Ph} = \frac{\boldsymbol{I}}{T}, = \frac{\boldsymbol{W}}{k}$ Phasengeschwindigkeit:

Dopplereffekt

bewegter Beobachter:

 $f_1 = f_0 \left(1 + \frac{v}{c_0} \right)$ $f_1 = f_0 \left(\frac{1}{1 - \frac{v}{c_0}} \right)$ bewegte Quelle:

3.6 Laustärke

 $L_P(dB) = 10 * \log \left(\frac{I}{I_0}\right) = 120 + \log(I)$ Lautstärke:

 $I(r) = \frac{P}{4*p*r^2} \qquad \text{in } \frac{Watt}{m^2}$ Intensität:

4 Wärmelehre

4.1 Thermische Ausdehnung

Längenausdehnung: $\Delta l = l_1 * \mathbf{a} * \Delta T$

 $l_2 = l_1 * (1 + \mathbf{a} * \Delta T)$

Flächenausdehnung: $\Delta A = A_1 * 2a * \Delta T$

 $A_2 = A_1 * (1 + 2\mathbf{a} * \Delta T)$

Volumenausdehnung: $\Delta V = V_1 * \mathbf{g} * \Delta T$

 $V_2 = V_1 * (1 + \mathbf{g} * \Delta T)$

Dichteänderung: $\boldsymbol{d}_2 = \frac{\boldsymbol{d}_1}{1 + \boldsymbol{g}^* \Delta T}$

Bei festen Körpern gilt: $\mathbf{g} \approx 3^* \mathbf{a}$

4.2 Gasgesetze

Allg. Zustandsgleichung: $\frac{p_1 * V_1}{T_1} = \frac{p_2 * V_2}{T_2}$

 $p * V = k_{\scriptscriptstyle B} * N * T$

 $k_{\scriptscriptstyle B}$ (Boltzmannkonst.): 1.381*10^ -23 J/K

N: Anzahl Teilchen in V

p *V = n *R *T

n: Anzahl mol

 $N = n * N_A \qquad m = n * M$

 N_A : Anzahl der Teilchen in einem mol

 $N_A = 6.022 * 10^{23} \frac{1}{mol} = 6.022 * 10^{26} \frac{1}{kmol}$

M: Molmasse

R: allg. Gaskonstante

 $R = 8314.4 \frac{J}{kmol*K}$

1. Hauptsatz der Thermodynamik: $\Delta U = Q + W$

W: von aussen zugef. Arbeit (pot. Energ.)

Q: Wärme von aussen (heizen)

U: Änderung der inneren Energie

Spez. Wärmekapazität (c): $\Delta Q = c * m * \Delta T$

c: Materialkonst. J/kgK

Mischungsregel: $\Delta Q_1 + \Delta Q_2 = 0$

Schmelz (f)/ Verdampfungswärme (v): $Q_{f/v} = L_{f/v} * m$